Палеонтология антрополога. Книга 1. Докембрий и палеозой

Размер шрифта:   13
Палеонтология антрополога. Книга 1. Докембрий и палеозой

Инге, Володе и Маше – моей любимой семье

* * *

Миллиарды лет вокруг Солнца вращается Земля. Примерно четыре миллиарда лет на ней копошится жизнь. Мы – лишь завершающий этап долгой и сложной истории, состоящей из мириадов странных созданий, изобретавших причудливые способы передать своё наследство дальше. Процесс этот долог и непрерывен. Но много раз планета сотрясалась катаклизмами. Метеориты и вулканы, оледенения и потопы, само развитие жизни регулярно приводили к массовым вымираниям и вслед за ними – всплескам разнообразия. Благодаря этому геологи и палеонтологи могут разделить всю историю на отрезки.

О первом из них – докембрии – мы знаем очень мало. Из мрака вселенской ночи выплыла планета, в сумраке первобытного океана шли странные химические реакции. Во тьме веков теряются важнейшие тайны бытия – зарождение жизни как таковой, появление ДНК, многоклеточности и полов. Это – ночь и рассвет планеты.

Второй из них – палеозой – освещён гораздо полнее. Встающая заря полноценной и понятной нам жизни представлена уже во всех своих ярких красках. За шесть периодов возникли все столпы нашей действительности, все главные группы организмов, все ключевые экосистемы.

Блистательный палеозой закончился крахом. Оставались ещё двести пятьдесят миллионов лет, полдень планеты – мезозой и наше время – кайнозой, в которые природа доводила полученное до логического – и даже разумного – конца.

Конца ли? Да уж, стоит разобраться в прошлом, чтобы настоящее не стало концом…

Введение

Кажется, что в вихре тысячелетий кружатся в безумном хороводе причудливые чудища, рвут друг друга на части, хаотично сменяют одно другого, пропадают и вновь возникают из ниоткуда. Но нет! Не так работает эволюция!

Чудищ, конечно, хватает. И они действительно иногда друг друга рвут, но их коловращение отнюдь не беспорядочно. Во всём есть определённая логика, и её постижение – суть палеонтологии.

Вообще, изложение прошлого в популярных книгах обычно строится тремя способами. Первый – описание истории палеонтологии, путешествия и приключения учёных, их поиски как полевые, так и интеллектуальные, споры и даже сражения, причём порой вполне буквальные. История науки поучительна и, бывает, мотивирует новых апологетов знания на продолжение подвигов. Идеальные примеры таких книг – «Жизнь охотника за ископаемыми» Ч. Штернберга (1936 г.), «На поиски динозавров в Гоби» А.К. Рождественского (1969 г.), «Тайны пылающих холмов» В.Г. Очева (1976 г.) и «Записки палеонтолога» Н.К. Верещагина (1981 г.). Конечно, у такого стиля есть и недостатки: кого выкрошил молотком из камня автор, про того и узнает читатель; цельную картину эволюции сложить из таких впечатлений невозможно.

Второй способ – описание ископаемых существ. Без фактов жить трудно, без них невозможно строить концепции и теории. Лучшие образцы – книги Й. Аугусты и З. Буриана «По путям развития жизни» (1966 г.), З.В. Шпинара и З. Буриана «История жизни на Земле» (1977 г.), Ю.А. Орлова «В мире древних животных» (1989 г.), а также М.Ф. Ивахненко и В.А. Корабельникова «Живое прошлое Земли» (1987 г.). Беда лишь в том, что зачастую книги, построенные по такому принципу, превращаются в занудные каталоги бесконечных и однотипных «завров».

Третий подход – изложение идей о том, почему шла эволюция, что её двигало, как влияли на живых существ астрономические и геологические события, как сами эти существа взаимодействовали между собой. Строго говоря, это – самая суть палеонтологии. Практически образцовые примеры – уникальные книги К.Ю. Еськова «Удивительная палеонтология» (2007 г.) и А.Ю. Журавлёва «Сотворение Земли» (2019 г.). Но и этот подход без богатого фактажа рискует скатиться в бесплодное теоретизирование и прикольные, но не слишком осмысленные «размышлялки».

Одна из великих проблем популяризации палеонтологии – прочный стереотип, что это «прикольные динозаврики для детишек». На лекции по палеонтологии, даже если они заявлены как довольно научные, родители гарантированно приводят трёх-пятилетних малышей. В 99 % случаях новейшие книги по палеонтологии – действительно книжки с картинками для дошкольников и школьников. Стандартный их вид – большие яркие иллюстрации (часто совершенно недостоверные) и минимум подписей (чаще всего довольно унылых и тоже не слишком отвечающих современному уровню науки). С одной стороны, понятно, что внешний вид ископаемых существ действительно часто впечатляет, а без картинок тяжело представить их. С другой же, всё изобразить невозможно, а в наш век интернета с минимальными усилиями легко найти изображение почти любой древней твари. Скучное же перечисление «жил там – тогда – метров в длину» должно быть лишь скелетом повествования, тогда как кровь и плоть книги должны бы составлять объяснения причин и закономерностей происходившего и влияния прошлого на современность.

Можно ли совместить плюсы разных подходов и постараться избежать минусов? Что ж, попытаемся это сделать. Конечно, желающего приобщиться к чудесам палеонтологии ждёт немало испытаний. Одно из них – мудрёные и бесчисленные латинские названия. Без них никак не обойтись. Русских названий по понятным причинам для подавляющего большинства древних существ нет; иногда в детских книгах латынь заменяют русской транскрипцией, но это – самый ужасный вариант, потому что заинтересовавшийся читатель потом не сможет найти подробностей и развития истории в других источниках. Впрочем, в нашей книге транскрипция будет иногда применяться для меньшей громоздкости и избежания повторений, но с обязательным озвучиванием нормального латинского имени, хотя бы и в другом разделе текста. Зато названия бывают поучительны, интересны и даже забавны. Лучше всего расслабиться, не пытаться запомнить все имена – их миллионы, всё равно не получится – и воспринимать латынь как музыку сфер; тогда постижение палеонтологии становится гораздо приятнее. В случаях, когда известно много видов какого-то рода, в нашей книге приводятся только родовые названия; если вид только один или конкретный вид чем-то особенно выдаётся, приводится и видовое наименование.

Между прочим, систематика многих и многих групп крайне запутана и спорна, так что, во избежание лишних споров, в большинстве случаев в книге не указывается ранг систематических групп – всё равно найдётся противоречащая точка зрения.

Изобилие латыни позволяет бороться с важнейшим стереотипом, огромной бедой современного бытового мышления. Часто в книгах по палеонтологии в стремлении к упрощению всё богатство древних форм сводится к нескольким знаковым существам, дескать, «в палеозое жили трилобиты, в мезозое – динозавры, а кайнозой – время млекопитающих», поминается парочка переходных видов и парочка «живых ископаемых», причём примеры из книги в книгу приводятся одни и те же. У многих людей после чтения подобных книг складывается устойчивое впечатление, что «ничего-то и не известно, пару огрызков нашли – и насочиняли, вся эта наука – полная ерунда», за чем обычно следуют мутные рассуждения про творцов, инопланетян и прочий бред. В реальности наука располагает сведениями о сотнях тысяч древних видов! Уж чего-чего, а недостатка в данных у палеонтологов нет, только успевай изучать. Хоть немного отразить это великолепие, чтоб в глазах зарябило и в ушах зашумело, – одна из главных задач нашей книги. Для облегчения жизни читателя великие предки ключевых групп живых организмов так и названы «великими предками», а наши (наши-то нам интереснее всего!) даже «Великими Предками». Особо упорные могут попробовать их посчитать.

Тут мы плавно переходим к следующей сложности – обилию материала. Любитель прошлого должен быть готов помнить великое множество фактов и уметь ими интеллектуально жонглировать. Между прочим, это проблема и для автора: невозможно быть специалистом во всём. Именно поэтому многие крутые палеонтологи отказываются писать обобщающие труды. Специалист по брахиоподам может ничего не знать о звероящерах, палеоботаник мало смыслит в рыбах, знаток грызунов не отличит конфуциосорниса от энанциорниса. А куда деваться! Специализация – не повод не писать обобщающих книг. Я – автор труда, который Вы держите в руках – антрополог, то есть специалист по человеку. Но я же и биолог, то есть общая логика исследования в других биологических специальностях мне известна. И всегда надо помнить, что планета у нас не такая уж большая, биосфера на ней одна, взаимосвязи и взаимовлияния не случайны. Прошлое человека сложилось из нужд и сложностей наших предков, живших от докембрия до наших дней. На наше появление и особенности повлияли условия на первоземле и дрейф континентов, кометы и астероиды, солнечная активность и геологические процессы, конструкция раковины первых моллюсков и специфика корней примитивных растений, тип размножения подёнок и злоба хищных динозавров, симбионты в кишечнике термитов и красота цветов, несовершенство лап креодонтов и совершенство кошек… Всё это и многое другое – наше прошлое, без этого человек или вообще не появился бы, или был бы совсем иным. Так кому же, как не антропологу, писать обзор живого прошлого Земли?!

Прежде чем приступать к истории жизни, хотелось бы выразить глубочайшую признательность и высказать огромнейшее спасибо всем, кто способствовал улучшению данной книги. Мелине Ананян координировала работу над книгой с самой идеи до выхода в свет. Александр Борисович Соколов взял на себя тяжкий труд поиска редакторов и уговорил их на подвиг быстрейшего прочтения и комментирования немаленького текста. Павел Владимирович Селиванов высказал ценнейшие замечания по части датирования, геологии и палеогеографии; благодаря ему эта сторона книги стала чуточку правдивее. Павел Петрович Скучас выполнил едва ли не самую трудную задачу – проверил и разобрал почти всю зоологию, внёс важные правки и безжалостно раскритиковал многие мои пассажи. Сергей Владимирович Наугольных просмотрел ботаническую часть. Шурупова Яна Андреевна проконтролировала беспозвоночную часть книги. Михаил Сергеевич Гельфанд внимательно прочёл весь текст и сделал много концептуальных замечаний. От всей души благодарю всех научных редакторов за их усилия и потраченное время! И, конечно, заранее извиняюсь перед научными редакторами, что, идя на поводу популярной направленности книги, я учёл не все их желания, так что, если Уважаемый Читатель найдёт ещё какие-то упущения, вся вина лежит исключительно на авторе.

Отдельную благодарность выражаю редакторам Марии Шатулиной и Екатерине Семёновой, любезно взявшим на себя нелёгкую задачу внести мои правки в итоговый текст, без них я бы наверняка не уложился в сроки, а также Марише Яковлевой, чья энергия немало способствовала ускорению всего процесса.

Палеонтология

Для начала стоит определиться с понятиями. Как уже говорилось, многим представляется, что палеонтология – «наука о динозавриках». Но нет.

Палеонтология – наука об органическом мире прошлого и условиях его существования.

Палеонтология – наука об органическом мире прошлого и условиях его существования. В этом кратком определении важны обе составляющие. Во-первых, палеонтология изучает все жившие раньше организмы, а не только животных. Например, изучением царства животных занимается палеозоология, которая сама делится на много частей: насекомых изучает палеоэнтомология, рыб – палеоихтиология и так далее. Царство растений – вотчина палеоботаники, а для водорослей внутри неё предусмотрена палеоальгология. Не менее существенна и вторая часть определения палеонтологии: изучение условий существования древних живых существ – принципиальный раздел этой науки. «Отчего и почему» бывают гораздо интереснее, чем «что и когда».

Понятно, что в помощь палеонтологии и неразрывно с ней существуют смежные дисциплины, например, огромный комплекс методов датирования, палеоклиматология и палеогеография, а также прочие. Огромную важность для палеонтологии имеет геология в самом широком смысле этого слова. Профессиональному палеонтологу не мешает знать химию. Хорошо бы ещё уметь работать руками – как в поле геологическим молотком и кайлом, так и в лаборатории хитрыми растворами, препаровальной иглой и бинокуляром, а нынче и более технологичными инструментами – электронным микроскопом, томографом, хромато-масс-спектрометром и секвенатором.

Собственно, труд палеонтолога состоит из трёх основных стадий.

Поиски и раскопки. Для начала надо найти место, где сохранились ископаемые остатки. Иногда это бывает итогом счастливой случайности: при работах в карьере или шахте, рытьё котлована или распашке земли, обрушении склонов или размывании оврагов на поверхность «всплывают» слои с окаменелостями. Если нашедший их достаточно грамотен, он сообщает о находке в институты и музеи, откуда специалисты спешат к месту, пока уникальные артефакты не уничтожены силами природы или усилиями людей. Но и сами палеонтологи предпринимают активные усилия для поисков: каждую весну и осень, когда земля свободна и от снега, и от травы, поисковики ползают по балкам и каменным стенам, пляжам и пустыням, тщательно осматривая все потенциально богатые места. Ясно, что не всегда этот энтузиазм понятен местным жителям. Каждому палеонтологу (кстати, и археологу) до боли знакомы фразы «что, золото-то уже нашли?» и «что, оружие ищете?» Переубедить вопрошающих иногда невозможно. Не может же взрослый человек всерьёз искать окаменевшие кораллы и кости?..

Но современные палеонтологи идут дальше. Геологи в XIX и особенно XX веке отлично поработали: практически для всех территорий давно составлены подробные геологические карты с указанием выходящих на поверхность пород, их возраста и особенностей формирования. Так что палеонтолог может фактически на заказ искать то, что его в данный момент интересует. Уже классический пример – поиски переходной фазы между рыбами и амфибиями: исследователи посмотрели по геологической карте, где залегают наиболее богатые выходы девонских мелководных и пресноводных отложений, поехали туда и спустя пару сезонов нашли-таки скелет тиктаалика.

Сами раскопки могут выглядеть очень по-разному. Въевшийся стереотип о помавании кисточкой – на 99 % миф. Даже само слово «раскопки» не слишком отражает реальность. Порой «раскопки» – это промывка песка из какого-нибудь ручья ситом по методике золотоискателей прошлого; так, например, в среднерусских речках отлично находятся зубы мезозойских акул. Иногда это могут быть поверхностные сборы, если камни сами крошатся и их можно даже не особенно колоть молотком. Иногда, напротив, приходится изрядно попотеть и помахать киркой или задействовать экскаваторы и бульдозеры. Один большой скелет динозавра или слона учёные могут расчищать много лет подряд, особенно в высоких широтах, где полевой сезон короток. В приполярных областях Сибири, Аляски, Канады и в Антарктиде сезон совсем махонький, туда трудно добраться, а порой ещё труднее оттуда выбраться. Тамошние раскопки – суровый экстрим.

Бывают, конечно, и райские условия. Например, над уникальным местонахождением меловых птиц в Чаояне китайцы построили огромадный купол-павильон, да ещё в виде скелета, так что учёные могут спокойно и комфортно работать там круглый год. Встречаются и совсем странные способы добычи ископаемых. Например, в Бирме местные жители вымывают бесконечное число мелового янтаря, который содержит уникальнейшие включения – от растений, пауков и насекомых до ящериц, энанциорнисов и частей динозавров. Исследователи сами не ищут янтарь, а покупают его на местных рынках; что ни год, выходит десяток сенсационных статей по материалам из бирманского янтаря. На юге США в пустынях роль бирманских крестьян выполняют муравьи: отчего-то им очень нравятся зубы мезозойских млекопитающих, которые они тащат в муравейники. Палеонтологи давно прочухали эту особенность трудолюбивых насекомых и нагло разоряют их жилища, добывая сразу готовую коллекцию (и учёных можно понять – попробуйте-ка на пятидесятиградусной жаре поползать по каменистой пустыне в поисках зубов, которые глазом-то трудно различить). В некоторый момент пришлось даже вводить ограничение на число раскапываемых муравейников, чтобы алчные исследователи не извели бедняг мурашек под корень.

Реставрация и препаровка. Принесённые в лабораторию образцы обычно ещё надо долго чистить, этим занимаются специалисты-препараторы. Между той трухой, что найдена, и той красотой, что предстаёт в витринах музеев, на страницах статей и книг – огромная дистанция. Препарирование – отдельный вид искусства, для него нужен талант, невероятное терпение, надёжные руки и много знаний. Крутые препараторы уникальны и идут нарасхват. Иногда очистка сложного образца занимает не то что год, а годы. Бывает, что вмещающая порода прочнее самой окаменелости, тогда приходится задействовать не только специальные препаровальные машинки, но и кислоты и прочие химикаты. Иногда образец даже намеренно разрушают, например пилят и зашлифовывают, чтобы получить ценную информацию. Классикой стали работы по кровеносной и нервной системам панцирных рыб, когда их черепа шлифовались с маленьким интервалом, каждый шлиф подробнейше зарисовывался, а в итоге получалась стопка рисунков – трёхмерная модель черепа со всеми мельчайшими канальцами. Нынче, напротив, проще бывает вообще не доставать образец из камня, а просветить его томографом; полученная информация может оказаться богаче, чем при очистке. Понятно, широко используется микроскопирование. Один из впечатляющих методов – золотое напыление на особо мелкие образцы для повышения контрастности. Золотые зубы силурийских рыб – это не только научно, но и красиво-богато.

Реконструкция, интерпретация, публикация и обсуждение. Главное в работе палеонтолога, конечно, – понять, что, собственно, попало в его руки, и почему оно когда-то было таким, а не иным. Обычно окаменелость не целая, тогда надо попытаться реконструировать недостающие части; тут исследователя ждут коварные ловушки, примеры которых ещё будут приведены в книге. Важнейшая часть исследования – подробное описание; в скучном варианте на нём всё и заканчивается. Но хорошо бы продвинуться дальше и объяснить, что довело древнее создание до жизни такой, а зачастую и до вымирания. Тут важно, с одной стороны, включить воображение, а с другой, – держать его в узде и разумных рамках. Совсем без интерпретации пропадает смысл науки, но и безграничное фантазирование бессмысленно. Придумать можно что угодно, а доказать – только реальность. Нам надо не придумать, как могло бы быть, а выяснить, как было на самом деле. Конечно, сплошь и рядом встречаются трудные случаи, так что споры учёных не затихают порой годами и десятилетиями.

Чрезвычайно важный момент исследования – публикация результатов, дабы они были доступны как можно большему числу людей. Это – принципиальнейшее условие науки. Именно поэтому не является наукой частное коллекционирование. Бывает, что супер-ценные образцы лежат у любителей в шкафах на полочках, но рано или поздно оказываются в помойке и пропадают, так и не будучи описаны. Случается, что и в музейной коллекции окаменелость покоится много лет, пока до неё дойдут руки, ведь число находок на порядок больше, чем число учёных. Но музейная коллекция по крайней мере никуда не денется, к ней прилагается документация, специальные условия гарантируют сохранность, так что будущие исследователи могут поработать с экспонатами, возможно, применив новые методы. Конечно, иногда и любители могут публиковать статьи, но таких грамотных специалистов, не являющихся профессиональными палеонтологами, во всём мире пара человек. Всё же палеонтология – это серьёзная профессия, требующая полной отдачи, времени, специальных навыков и знаний, заниматься ей «в свободное от работы время» как хобби почти нереально.

Мораль, думается, ясна: если волей случая вам в руки попал ценный образец, подавите в себе плюшкинизм, отнесите находку палеонтологам, тогда о ней узнаете не только вы, а и весь мир. Для частного же коллекционирования есть миллионы массовых находок, не представляющих эксклюзивного значения для науки.

В своей работе палеонтологи руководствуются несколькими сравнительно простыми принципами, облегчающими жизнь.

Принцип актуализма. «Настоящее – ключ к познанию прошлого»: признаки современных организмов позволяют реконструировать черты древних существ, то есть это – изучение прошлого с помощью настоящего. Например, если мы знаем, что панцирь современных черепах нужен им для защиты, то легко догадаться, что той же цели служил панцирь панцирных рыб, некоторых текодонтов, панцирных динозавров, ископаемых броненосцев и прочих подобных тварей. Если огромные клыки современных львов и леопардов нужны для убивания и разрывания добычи, то логично, что так же применялись клыки звероящеров.

Принцип историзма. «Прошлое – ключ к познанию настоящего»: выявление исторических предпосылок современности, то есть изучение настоящего с помощью прошлого. Всё произошло на какой-то основе с исходно другим предназначением. Например, существование и строение жабр у наших предков-рыб объясняют примерно половину нашего строения и поведения. Не зная эволюции жаберного аппарата, затруднительно объяснить анатомию наших челюстей, желёз, многих мышц, а также, скажем, зевоту. Одно из ключевых понятий тут – преадаптация, то есть ситуация, когда некая черта возникла для одной какой-то надобности, но в новых условиях пригодилась совсем для другой. Например, исходные плавниковые складки первых рыбообразных были нужны для того, чтобы держать равновесие и не слишком кувыркаться в воде, потом в ордовике они начали ундулировать – волнообразно изгибаться – и стали дополнительным двигателем, после в силуре разделились на плавники, затем в кистепёром виде они оказались удобны для переползания через брёвна, заваливавшие дно мелких девонских водоёмов, преобразовались в передние и задние конечности наземных амфибий и рептилий, у млекопитающих пригодились для лазания по ветвям, а в конце миоцена задние стали у нас ногами, а передние – руками, которыми я сейчас пишу эти строки. Каждая стадия была необходима для последующей, а её особенности определяли странности конструкции нового органа у потомков. Эволюция ничего не создаёт на пустом месте, а смена назначения органов бывает весьма неожиданной. «Я тебя слепила из того, что было» – главный девиз процесса.

Принцип историзма более чем срабатывает и в концептуальных моментах. Например, слияние всех кусков суши в Пангею в перми стало причиной похолодания и поводом для возникновения теплокровности у зверозубых рептилий, а вымирание динозавров в конце мела явилось достаточной причиной последовавшего всплеска разнообразия млекопитающих.

Морфофункциональный анализ – изучение древнего организма в связи с его образом жизни. Признаки «заточены» под конкретные условия, а смена условий вызывает смену признаков. Классический пример – описанная В.О. Ковалевским эволюция лошадей. Древнейшие палеоценовые и эоценовые предки жили в лесах, у них были низкие бугристые коронки зубов, приспособленные для пережёвывания плодов и листьев, и много растопыренных пальцев на коротеньких ножках, чтобы не слишком вязнуть в сырой и рыхлой почве, усыпанной прелыми листьями. Далее леса постепенно сменялись кустарниковыми зарослями и степями, в пище увеличивалась доля злаков, отчего зубы стали высококоронковыми и гребнистыми, а ноги менялись под более сухую землю равнин – стройнели и прочнели, а число пальцев сокращалось вплоть до одного.

Другой пример, вокруг которого до сих пор бушуют споры, – образ жизни тираннозавридов. Всякий знает, что огромные тероподы были ужасными хищниками, не дававшими проходу травоядным динозаврам. Однако исследование пропорций слепков их мозга – эндокранов – показывает, что тираннозавриды имели очень плохое зрение и слух – пупырышки этих центров еле возвышаются; ассоциативные, то есть мыслительные, центры развиты слабо, зато обонятельные луковицы велики. Их челюсти были слабы на боковые нагрузки, зубы еле-еле держались в челюстях, так что сопротивляющаяся добыча, тем более крупная, просто переломала бы им весь рот. Ноги не были приспособлены для быстрого бега и маневрирования, так что убежать от них было не так уж сложно, вопреки сцене из «Парка Юрского периода», где тираннозавр без особого труда догоняет машину на скользкой от дождя дороге. По итогу, весь комплекс – подслеповатый, глуховатый и туповатый, медленный и непрочный, зато отлично нюхающий и способный раскусить что угодно, главное, чтоб оно не дрыгалось – скорее типичен для падальщиков, а не активных охотников. Впрочем, надо учитывать, что добыча-то тоже была чрезвычайно медленной, огромной, то есть очень заметной даже издалека, и довольно вялой, так что при таком раскладе тираннозавриды вполне могли быть хищниками. Только вот эпичные битвы с рыком и прыжками, столь любимые мультипликаторами – чистой воды фантазия. Тормознутость битвы тираннозавра и какого-нибудь травоядного динозавра трудно себе представить; для первого приближения можно посмотреть на сражения каймана и анаконды, крокодила и черепахи, ужа и лягушки.

Конечно, всегда стоить помнить, что ископаемые существа – не копии современных, иногда они бывают оригинальны и на первый взгляд противоречивы. Скажем, халикотерии – представители непарнокопытных, имели на пальцах когти, причём раздвоенные. Если бы были найдены только обломки этих когтей, можно было бы подумать, что они принадлежат хищному зверю. Но нет, зубы и все прочие признаки, без всякого сомнения, относят халикотериев к растительноядным. Когти эти странные животные использовали для пригибания ветвей деревьев. Если же вникнуть в детали строения халикотериевых когтей, то не так сложно понять, что они были всё же ближе к копытам. Прямо противоположный пример: мезонихии имели на пальцах копыта, хотя по всем остальным признакам – особенно по строению челюстей и зубов – они, несомненно, относятся к хищникам.

Вывод прост: чем больше данных, тем лучше. Не стоит делать далеко идущих выводов по единичным фрагментарным находкам, на таком не раз попадались даже лучшие умы прошлого, не надо наступать на те же грабли. Благо, сейчас информации у нас просто гигантское количество, и она продолжает поступать невероятными темпами.

«Взятие в скобки». Изучение древнего организма в сравнении с более и менее примитивными формами. Современная наука уже более-менее разобралась с порядком возникновения разных существ, к тому же, что приятно, многие из них имеют современных потомков. Логично предположить, что промежуточные вымершие формы должны иметь промежуточные черты. Например, среди архозавров крокодилы – очень примитивные, отделились от общего ствола текодонтов весьма рано, птицы – самые продвинутые, обособились последними, а динозавры находятся на филогенетическом древе примерно посередине, хотя они и не потомки крокодилов и не факт, что предки птиц. Ещё есть птерозавры, чья ветка ответвляется после крокодилов, но до динозавров. Зная особенности крокодилов и птиц, можно строить гипотезы об особенностях птерозавров и динозавров. Конечно, такой подход должен учитывать, что современные примитивные формы (те же крокодилы) совсем не копии ископаемых прототипов, а имели свою долгую эволюцию; и уж подавно сильно изменились продвинутые группы.

* * *

Тафономия – раздел палеонтологии, изучающий пути образования ископаемых – фоссилий. Термин введён советским палеонтологом И.А. Ефремовым.

Ископаемые достаются учёным в разном виде.

Окаменение (петрификация) и замещение: в этом случае органика разрушается, а вода, содержащая минеральные компоненты, заполняет все полости и поры, где минералы отлагаются, создавая каменистые фоссилии. Понятно, что обычно окаменевают только самые прочные части, например кости, но изредка, при хорошей концентрации минерального раствора, петрифицируются мышцы и даже такие эфемерные части, как язык, нервы и глаза. Иногда по пути окаменевающие элементы заметно деформируются, искажаются и сплющиваются самым причудливым образом. Качество окаменения бывает разным – от слабооформленных чурок, лишь в общих чертах напоминающих исходный объект, до клеточной точности, что позволяет оценить уровень обмена веществ и даже прикинуть размер генетического аппарата. Чрезвычайно ценный вариант окаменелостей – микрофоссилии: одноклеточные водоросли, микроскопические раковинки простейших, споры и пыльца растений. По ним идеальным образом восстанавливаются климатические колебания; по большому счёту, по ним проводятся и границы геологических периодов.

Фоссилизация
Рис.0 Палеонтология антрополога. Книга 1. Докембрий и палеозой

1. Мертвое животное опускается на морское дно.

Рис.1 Палеонтология антрополога. Книга 1. Докембрий и палеозой

2. Трупоеды и бактерии вскоре очищают его скелет от плоти.

Рис.2 Палеонтология антрополога. Книга 1. Докембрий и палеозой

3. Сверху образуется осадочный слой.

Рис.3 Палеонтология антрополога. Книга 1. Докембрий и палеозой

4. Растворенные в воде минеральные вещества просачиваются в горную породу и останки животного.

Рис.4 Палеонтология антрополога. Книга 1. Докембрий и палеозой

5. Вода вытесняется из породы. Минеральные вещества замещают костное вещество в костях.

Рис.5 Палеонтология антрополога. Книга 1. Докембрий и палеозой

6. Миллионы лет спустя горная порода становится сушей. Стихия разрушает её, обнажая скрытые в ней окаменелости.

Замещающие породы тоже бывают разными. Особенно впечатляют окаменелости, выполненные пиритом – выглядят они, как золотые. В Австралии знамениты переливающиеся всеми цветами радуги кости динозавров, замещённые опалом. В канадской Альберте перламутр аммонитов стал аммолитом – зелёно-жёлто-оранжевым минералом невероятной красоты.

Копролиты – окаменевшие экскременты, то есть какашки – не самый привлекательный, но богатый информацией вид фоссилий. По ним можно проследить детали диеты и иногда поведения древних животных. Часто внутри копролитов сохраняются косточки, чешуя и даже окаменевшие шерстинки, а изотопный анализ позволяет уточнить содержание разных типов органики в пище. Угадать, кто же нагадил миллионы лет назад, бывает непросто. Хорошо с акулами: благодаря спиральному клапану в прямой кишке их завитые копролиты крайне характерны. А вот кому принадлежат копролиты в виде звёздочек из пермских отложений Пермской области – до сих пор неизвестно; зато как красиво можно назвать это таинственное существо – «Астрофекалис мирабилис».

Рис.6 Палеонтология антрополога. Книга 1. Докембрий и палеозой

Окаменелый скелет динозавра

Обугливание – довольно частый вариант фоссилизации, при котором нестойкие органические компоненты исчезают, но углеродная, то есть углистая составляющая остаётся. Понятно, что чаще и легче это происходит с растениями: в гигантских залежах бурого и каменного угля регулярно встречаются обугленные стволы, корни и листья деревьев.

Отпечатки образуются, когда организм падает на песок или впечатывается в него; последующие отложения покрывают его, так что, когда палеонтолог раскалывает плитку песчаника, получается отпечаток и противоотпечаток. В зависимости от грубости породы разрешение будет разным. Если осадок был очень мелкий, сохраняются детали строения ножек и крыльев насекомых, мельчайшие прожилки листьев растений, семена и чешуя рыб в желудках животных. На отпечатке мезозойской птицы Archaeorhynchus spathula удалось проследить даже тонкости строения лёгких. Различаются и размеры отпечатков: чаще это не очень большие фрагменты тонких объектов, например, бесскелетных организмов, листьев и кожи, но встречаются и огромные отпечатки листьев, целых ихтиозавров, птерозавров, птиц и зверей. Иногда внутри отпечатка консервируются органические вещества, которые, позволяют, например, определить родство эдиакарских загадочных тварей или цвет кожи и перьев мезозойских рептилий и птиц. Самые знаменитые местонахождения самых впечатляющих отпечатков – Золенгофен и Мессель в Германии и Джехол в Китае.

Рис.7 Палеонтология антрополога. Книга 1. Докембрий и палеозой

Отпечаток вендского организма

Полости, слепки и ядра получаются, когда остатки живых существ погружаются в полужидкий осадок, после чего органика сгнивает или растворяется, оставляя полости. Эти пустоты могут сохраниться, а могут заполниться новым плотным осадком. Иногда в последующем разрушается уже окружающая порода, так что нам достаются объёмные слепки древних организмов. Обычно это происходит с раковинами и частями деревьев, но известны прецеденты слепков даже носорогов. Особый вариант слепков – эндокраны – отливки мозговой полости, которые могут образовываться сами собой, а при надобности изготавливаются уже самими палеонтологами. К сожалению, эндокраны не отражают всех деталей строения мозга, на них обычно не видно борозд и извилин, но общую форму и пропорции они передают.

Рис.8 Палеонтология антрополога. Книга 1. Докембрий и палеозой

Эндокран древнего человека из Гановце

Следы, ходы и норы изучаются особым разделом – ихнологией. Эта область весьма специфична и очень важна, так как позволяет наглядно увидеть поведение древних животных, например, взаимодействие хищников и их добычи. К сожалению, довольно редко можно соотнести следы ног и отпечатки и кости тех, кто их оставил, так что для следов существует отдельная номенклатура – выделяются ихнотаксоны (кстати, такая же ситуация существует с яйцами – их называют своими именами, которые редко прямо увязываются с теми, кто яйца отложил).

Полости в янтаре – один из самых красивых вариантов фоссилизации. В смоле, вытекавшей из деревьев, вязли древние насекомые, пауки, частички растений, ящерицы, перья птиц и прочие мелкие штуки. Смола затвердевала и становилась янтарём, внутри которого все эти чудеса застыли как пустоты с минимумом высохшей органики. Благодаря идеальному обтеканию смолой в янтаре видны наимельчайшие детали строения. К сожалению, надежды на то, чтобы там сохранилась ДНК, как это показано в фильме «Парк Юрского периода», не оправдались.

Битумизация – консервация в естественном парафине, асфальте и озокерите. Самые известные жертвы асфальта – мамонты, смилодоны, волки и гигантские грифы из Ранчо ла Бреа в Калифорнии. Самые впечатляющие находки – куски туш мамонта и шерстистых носорогов из Старуни на Западной Украине. Правда, они же – и самые несчастные: части мамонта и первого носорога были выброшены на свалку, а из шкур незамысловатые добытчики озокерита, принявшие их за волов, пытались шить обувь. Чуть больше повезло второй туше носорога, почти идеальной сохранности, чучело с которой до сих пор хранится в музее, хотя нормального исследования находки так никогда и не было сделано.

Рис.9 Палеонтология антрополога. Книга 1. Докембрий и палеозой

Насекомое в янтаре

Замораживание, высушивание (мумификация), засаливание – почти идеальные варианты. Все слышали про замороженных мамонтов из Сибири, на телах которых сохранились мышцы, кожа и шерсть, в коже – личинки оводов, внутри рта и желудка – трава. Как ни странно, единственное, что так и не сохранилось – это клетки. В процессе заморозки кристаллы льда порвали все мембраны, так что до сих пор ни одной целой клетки так и не было найдено. А это важно, так как цитоплазма столь же необходима для клонирования, как и ДНК, которая для мамонтов уже полностью расшифрована. Конечно, замороженными находят не только мамонтов, но и шерстистых носорогов, бизонов, лошадей, росомах, пещерных львят и прочих существ – в настоящее время таких находок сотни. Просто на мамонтов обращают гораздо больше внимания. Кого привлечёт мороженый суслик? А голая амёба, актиномицет или гигантский вирус? А меж тем все они найдены в плейстоценовых льдах. Самые удивительные находки с Колымы – семена растения смолёвки узколистной Silene stenophylla и нематоды Panagrolaimus aff. detritophagus и Plectus aff. parvus; их удалось оживить спустя, соответственно, 31,8 и 41,7 тысяч лет! Замороженные растения и тела животных найдены и на Аляске, хотя в меньшем количестве (соответственно меньшему размеру самой Аляски).

Маленькая тонкость

Всегда возникает вопрос: если найдены мороженые мамонты, то где мороженые люди? Самый известный и самый древний «ледяной человек» из Альп – Этци – жил 5,3 тыс.л.н. Наверняка живущие и работающие в тайге и тундре люди иногда находят и более древние тела, может быть, даже неандертальцев и денисовцев, но, думается, в этом случае их либо хоронят, не разобравшись, либо стараются никому не сообщать, боясь судебного преследования.

Несколько реже встречаются высушенные мумии – такие известны из пустынь Центральной Америки (куски шкур гигантских ленивцев), а также пещер Новой Зеландии (ноги и головы птиц моа). Засаливание идёт параллельно с высушиванием в пустынях Австралии (части тел дипротодонов) и Центральной Азии (человеческие мумии из Тарима в Китае и Чехрабада в Иране). Такие находки имеют совсем небольшой возраст, обычно уже голоценовый. Впрочем, соляным растворам принадлежит и абсолютный рекорд по консервации древних организмов – галофильных архей Halococcus salifodinae из Австрии, существовавших 250 млн л. н.!

Рис.10 Палеонтология антрополога. Книга 1. Докембрий и палеозой

Halococcus salifodinae

Фоссилизация может происходить быстро и медленно, но обычно – быстро, так как иначе бактерии успеют разложить органику на неорганические составляющие. Скорость зависит от специфики вмещающих пород и концентрации минеральных веществ в воде. С одной стороны, отдельные белки могут сохраняться миллионы лет, молекулы ДНК выделены из костей Homo heidelbergensis из Сима де лос Уэсос с древностью 427 тыс.л.н. С другой стороны, порой минерализация занимает считанные дни. Например, в московской канализации в XX веке находились окаменевшие тапочки и кошки того же XX века производства, причём окаменевала даже шерсть бедных животных.

Кроме отдельных фоссилий, тафономия изучает и целые захоронения, особенности их формирования и структуру. Для образования палеонтологического местонахождения необходимы четыре этапа. Во-первых, остатки организмов должны сконцентрироваться в каком-то месте; иногда это происходит во время массовой гибели, иногда остатки просто сносятся водой в какую-нибудь заводь или скапливаются в ямах, оврагах, пещерах, даже пнях. Во-вторых, аккумулированные остатки должны быть достаточно быстро захоронены в осадке. В-третьих, должна произойти фоссилизация – превращение в окаменелости. В-четвёртых, уже в современности вышележащие отложения должны быть так или иначе разрушены, чтобы мы могли добраться до окаменелостей. Все эти этапы обязательны и должны сменять друг друга строго последовательно; выпадение хотя бы одного ведёт к нарушению всего цикла. Например, если организмы не будут быстро захоронены в осадке, то они разрушатся; если они не фоссилизуются, то тоже исчезнут без следа; если разрушение отложений произойдёт до фоссилизации, то мы ничего не найдём.

Ясно, что столь счастливое стечение обстоятельств – чтобы и организм попал куда надо, и никто его не съел, и концентрация минеральных веществ в воде была оптимальной, и всё это пролежало до современности и не развалилось, и оказалось в доступном человеку месте, и мы ещё это нашли, да ещё чтоб нашёл не кто-нибудь, а нормальный палеонтолог – всё это крайне маловероятно. 99,99 % организмов без следа разрушаются, а их вещество возвращается в общий круговорот. Отсюда неизбежно вытекает неполнота палеонтологической летописи. Иначе и быть не может, а то бы мы ходили по скелетам, да и из какого такого вещества состоял бы у нас организм, если бы все предыдущие сохранялись?

Так что, как ни прискорбно, палеонтологам никогда не светит найти представителей всех ископаемых организмов. От большинства видов не сохранилось вовсе ничего, от многих – единичные и притом фрагментарные находки. Впрочем, есть и счастливые исключения, когда обнаруживаются просто грандиозные слои древесины, раковин, скелетов, отпечатков и прочих фоссилий. Некоторые даже добываются промышленным способом. Каждый год в печах сгорают миллионы отпечатков в каменном угле. Известняки, из которых построено огромное количество сооружений по всему миру, не что иное, как концентрат фоссилий. В стенах многих зданий и метро не так сложно найти членики морских лилий, а иногда и раковины аммонитов. Даже банальный писчий мел, изводимый в школах тоннами, – прессованные ископаемые, хотя бы и одноклеточные. Но и крупнокалиберные, вполне коллекционные фоссилии бывают бесчисленны: тысячами на продажу добываются мадагаскарские аммониты, марокканские трилобиты, китайские нотозавры и вайомингские рыбки.

Для обозначения разных фаз и вариантов местонахождения придуманы умные слова.

Танатоценоз – скопление мёртвых организмов или их частей. Танатоценозы могут быть автохтонными – захороненными в месте их гибели, или аллохтонными – перемещёнными к месту захоронения.

Тафоценоз – древний танатоценоз, претерпевший захоронение в породе.

Ориктоценоз – совокупность остатков организмов, изучаемая исследователями. Часто этим же словом обозначают просто список определённых таксонов из конкретного местонахождения. Тонкость в том, что часто какая-то часть тафоценоза до поры до времени ускользает от внимания учёных, в последующем же, с применением новых методик и подходов, ориктоценоз может неожиданно увеличиться, даже без дополнительных раскопок. А может и уменьшиться, если дополнительные исследования покажут, что множество ранее выделявшихся видов на самом деле представляют собой одно и то же. Такое происходит сплошь и рядом.

Геохронологическая, или стратиграфическая шкала – великое расписание времён, последовательность эпох от появления Земли до современности. Всё время существования планеты для удобства делится на отрезки, внутри разделённые на более дробные подразделения.

Маленькая тонкость

Почти любой отрезок делится на «нижний», «средний» и «верхний» или «ранний», «средний» и «поздний». Тонкость заключается в том, что «нижний – верхний» относится к стратиграфии, геологическому расположению в ненарушенных отложениях, а «ранний – поздний» – ко времени. Обычно слова «нижний – ранний» и «верхний – поздний» используются как синонимы, но разницу лучше в уме держать. Аналогично отличаются пары понятий «эратема – эра», «система – период», «отдел – эпоха» и «ярус – век»: первые термины в парах относятся к геологии, вторые – к хронологии. В ярусе окаменелости залегают, в веке существа жили.

Акротемы, или акроны – самые длинные отрезки, выделяющиеся далеко не всегда, актуальные лишь для дремучих докембрийских времён, где их обычно насчитывают два-три: гадей (катархей), архей и протерозой; иногда они не отличаются от эонов.

Эонотемы, или эоны – тоже грандиозные этапы. Иногда их выделяют всего два – докембрий и фанерозой. Впрочем, подразделения докембрия – гадей, архей и протерозой – тоже порой считаются эонами, а иногда за таковые идут внутренние подразделения архея и протерозоя (если их считать акронами) – ранне- и позднеархейский, а также ранне- и позднепротерозойский.

Эратемы, или эры – гораздо более стабильное понятие. Правда, для докембрия по-прежнему есть разнобой в разных схемах, но внутри фанерозоя всеми выделяется три эры – палеозойская, мезозойская и кайнозойская.

Системы, или периоды – самые ходовые отрезки с наибольшей стабильностью в разных схемах. Иногда внутри них выделяются ещё и подсистемы, но тут согласия меньше. Внутри палеозоя шесть периодов: кембрийский, ордовикский, силурийский, девонский, каменноугольный (карбоновый) и пермский. В мезозое три периода: триасовый, юрский и меловой. В кайнозое тоже три: палеогеновый, неогеновый и четвертичный (антропогеновый).

Отделы, или эпохи – ещё более мелкие и на практике не всегда хорошо определимые отрезки. Большинство периодов разделяются на нижнюю, среднюю и верхнюю эпохи; у некоторых нет средней, у некоторых названия оригинальнее; кайнозойские иногда дополнительно делятся на подотделы.

Ярусы, или века – самое мелкое подразделение, длиной от двух – пяти до десяти миллионов лет, редко больше. К тому же они иногда подразделяются на подъярусы, значимые, правда, уже только для региональных шкал. Теоретически ярусы должны быть самыми актуальными измерителями времени, но в реальной работе далеко не всегда возможно установить, к какому ярусу относится конкретный слой или, подавно, отдельная окаменелость. Особенно обидно, что часто возникают сложности соотнесения ярусов, установленных в разных странах по разным критериям.

Всегда важно помнить, что все указанные подразделения в любом случае условны. Лучшее тому доказательство – сравнение хронологической протяжённости разных отрезков: чем период древнее, тем он в среднем длиннее. Например, кембрийский и юрский периоды тянулись по 56 миллионов лет, девонский и карбоновый – по 60, меловой – 79, а эдиакарский и вовсе 94! В то же время вся кайнозойская эра заняла 66 миллионов лет, а четвертичный период длится каких-то несчастных 2,58 миллиона – меньше большинства ярусов. Такая несуразица выросла из двух корней.

Во-первых, границы этапов часто имеют скорее историческую ценность. Геологи XIX века исследовали конкретные местонахождения, описывали их фауну, сравнивали и пытались расположить слои в закономерном порядке. С тех времён сохранились много странных названий, например «четвертичный период». Дело в том, что в некоторый момент история Земли делилась на четыре периода: первичному более-менее соответствует палеозойская эра, вторичному – мезозойская, третичному – первая половина кайнозоя, а четвертичному – антропоген. Первые три названия поменялись (хотя третичный иногда и поминают по старинке), а последнее упорно держится в стратиграфических шкалах, хотя антропологам, понятно, больше нравится новое название. Ясно, что геологи прошлого имели крайне смутное представление о протяжённости выделяемых этапов, считалось, что они укладываются в несколько тысяч или от силы сотен тысяч лет. Ни о какой эквидистантности – равной нарезке по времени – речи не шло.

Вторая причина – неодинаковая осведомлённость учёных о разных эпохах. Очевидно, что про более отдалённые времена известно гораздо меньше, про близкие к нам – больше. Разрешающая способность методов сильно неодинаковая. Разобраться, к какому конкретно отрезку, например, девона или силура относятся отложения, бывает очень непросто, тогда как для неогена и антропогена у нас есть огромное количество надёжных маркёров. Да и просто самих отложений более поздних времён несравнимо больше. Отсюда вырастает «логарифмическое мышление»: недавним событиям придаётся больше значения, а древние сливаются в неразборчивую серую массу. Другое следствие – представление об ускорении эволюции при приближении к современности. Детали событий старины глубокой ускользают, потребности тогдашней жизни могут быть совершенно нам непонятны, тогда как мельчайшие события вчерашнего дня приобретают глубокий смысл и вселенскую важность. Кажется, что в палеозое сотни миллионов лет вяло суетились одинаковые трилобиты и росли одинаковые кораллы, а вот в последние-то сто тысяч лет вон сколько видов млекопитающих поменялось! А то, что трилобиты внутри себя и кораллы друг от друга отличаются порой гораздо больше, чем самые несхожие млекопитающие, понятно только специалистам по трилобитам и кораллам.

Важно понимать и сам принцип проведения границ между эпохами. В подавляющем большинстве случаев это делается по руководящим ископаемым – характерным для разных периодов живым организмам. Чаще всего в качестве таких руководящих выступает какаянибудь многочисленная и быстро эволюционирующая мелочь типа фораминифер, радиолярий, трилобитов, брахиопод, аммонитов, двустворок, граптолитов, конодонтов и спор растений. Например, в касимовском ярусе карбона обнаруживается комплекс аммонитов Dunbarites-Parashumardites, а в гжельском – Shumardites-Vidrioceras; роудский ярус перми содержит зубчики конодонтов Jinogondolella nankingensis, а последующий вордский – Jinogondolella aserrata. Смена родов и видов морских животных чутко отражает изменения температуры воды, иногда её микроэлементного состава, освещённости и прочих показателей среды. Наземная флора и фауна обычно более стабильны, да и материалов по ним меньше, так что они гораздо реже выступают в роли руководящих ископаемых.

В идеале выбираются такие руководящие ископаемые, по которым есть богатые данные о промежуточных предшествующих формах, то есть те, время появления которых гарантировано (привет креационистам, вещающим об отсутствии переходных форм). Определяется только нижняя граница хронологического этапа, то есть время появления нового комплекса организмов (только начало олигоцена маркировано вымиранием фораминифер Hantkeninidae), так как в последующем отдельные виды могут вымереть и не дожить до конца эпохи, а другие, напротив, пережить её и продолжиться в следующей. Это же значит, что важнее присутствие руководящего ископаемого, чем отсутствие: если уж кто-то возник в определённое время, его не найти в более древних слоях; кроме того, руководящие ископаемые просто могут не сохраниться в этом конкретном слое, или мы их пока не нашли. Впрочем, ясно, что нижняя граница одного отрезка автоматически означает верхнюю для следующего.

Поскольку границы проводятся по появлению фауны, то не стоит удивляться, что почти каждый период заканчивался вымиранием. Многим это представляется просто каким-то проклятием: «Да что ж такое?! Только кончится период, как все вымирают!» На самом деле, логика проста: возникновение новых групп обычно вызвано сменой условий, да к тому же новичкам необходимы свободные экологические ниши, а освобождение таковых обычно происходит из-за вымирания, которое, конечно, вызвано той самой сменой условий.

Понятно, что живых существ сонмы, эволюционировали они не слишком синхронно, на чьи проблемы надо обращать больше внимания – вопрос философский. Проводились даже эксперименты, когда одни и те же образцы, скажем, границы мезозоя и кайнозоя, предоставлялись разным исследователям для анализа. Результат был забавен: учёные, обращая внимание на разные окаменелости, проводили границу эр в разных местах стратиграфической колонки. Конечно, разница была не слишком принципиальная, но всё же расхождение на сотни тысяч и даже миллионы лет не так уж мало. А речь, между прочим, про то самое знаменитое позднемеловое вымирание, когда на планете исчезли динозавры, якобы из-за падения астероида.

Ясно, что в разных частях планеты фауна могла меняться неодновременно, руководящее ископаемое могло возникнуть в одном месте, а спустя миллионы лет мигрировать в другое, ставя под сомнение наши представления о синхронности отложений. Поэтому в настоящее время всё большее внимание уделяется физическим методам – палеомагнитным, хемостратиграфическим и палеоклиматическим.

Те же причины виной расхождению международной и региональных стратиграфических шкал. Планета велика, изменения климата сказывались в разных местах неодновременно и сильно неодинаково, флоры и фауны в разных местах не совпадают, так как в одних регионах могли вымирать, а в других – ещё долго сохраняться. Например, нижняя граница касимовского яруса по международной шкале проводится в основном по смене фораминифер и конодонтов, а в российской ещё и по аммонитам, отчего граница смещается в древность. Роудский ярус международной шкалы в российской называется казанским, а вордский – уржумским, причём в международном варианте выделяется по конодонтам, а в российском – по остракодам и конодонтам, но уже другим; дело ещё и в том, что международная шкала основана на морских отложениях, а в России для пермского периода преобладают континентальные.

Иногда целые ярусы кочуют из эпохи в эпоху: такое происходило, например, с датским, который из позднего мела отправился в палеоцен, приабонским, который из олигоцена уехал в эоцен, гелазским, который из плиоцена перекочевал в плейстоцен.

Иногда сказываются и патриотические настроения геологов и палеонтологов. Так, кептенский ярус международной шкалы у нас зовётся северодвинским, вучанский – вятским, гваделупская эпоха – биармийской, а лопинская – татарской. В США своя гордость: американские учёные упорно разделяют классический каменноугольный период на миссисипский и пенсильванский (обидно же, что почти все названия шкалы были даны в XIX веке по европейским областям с типовыми местонахождениями, и более того – о ужас! – российским, а Америка опоздала на раздачу красивых наименований). Долгое время во всём мире это игнорировалось, пока в 2000 году американские геологи не пропихнули миссисипий и пенсильваний в международную шкалу в качестве хотя бы подсистем. Совсем отдельная таксономия сложилась в Южной Америке – как в силу геологической и палеонтологической специфики, так и длительной изоляции местных учёных.

Особенно серьёзны расхождения международной и региональных шкал в части подразделения докембрия. Его неустаканенность вызвана малым количеством хороших местонахождений, крайней редкостью и спорностью ископаемых, да и немногочисленностью заинтересованных исследователей. Даже на уровне выделения эонов и эр тут до сих пор, как уже упоминалось, царит полный бардак. Международная шкала докембрия имеет более удобную и унифицированную номенклатуру, чем российская, но границы проведены гораздо формальнее – время просто нарезано на более-менее равные отрезки. Российская выглядит несколько кособокой (рифейский эон является частью позднепротерозойского эона, что само по себе странно; он делится на три эры без периодов и эпох, тогда как остаток позднего протерозоя – вендский период – не относится ни к какой эре, но делится на две эпохи), зато границы в ней гораздо более обоснованы стратиграфически, так как в нашей огромной стране полно отличных и прекрасно изученных разрезов. Китайцам же, понятно, больше нравятся термины «синийский период» и «синийская эра», хотя их границы достаточно неопределённы.

Всё же учёные разных стран пытаются договориться между собой. Созываются международные геологические конгрессы и симпозиумы, собираются комиссии, издаются решения. Ясно, что «международность» – понятие относительное, решения принимают конкретные люди, имевшие опыт исследования конкретных разрезов и специализирующиеся на конкретных группах организмов, но главное – работа идёт. Для взаимопонимания необходимо согласие и сотрудничество; важно, что палеонтологи стремятся к этому.

В нашей книге речь пойдёт про всю планету, так что повествование будет построено на основе международной шкалы.

Немало сложностей вызывает датирование границ эпох. Для некоторых моментов эти цифры определены достаточно точно, а некоторые находятся под сомнением. Например, до сих пор нет внятной границы между юрой и мелом, хотя, казалось бы, как такое может быть – самые известные периоды и до сих пор не разграничены?! В любом случае важно отметить, что датировки расставляются от нашего времени. Классической ошибкой неспециалистов является автоматическое добавление к дате присказки «до нашей эры». «Наша эра» началась чуть больше двух тысяч лет назад (посмотрите на календарь), но в масштабах десятков и сотен миллионов эта пара тысяч – вообще ни о чём, гораздо меньше погрешности методики определения возраста.

* * *

Дрейф материков – мощнейший процесс, во все времена влиявший на эволюцию жизни на Земле. Сходство очертаний краёв Африки и Южной Америки замечали давно – ещё А. Гумбольдт и Е.В. Быханов, но эти мысли долго не получали развития. Лишь в начале XX века идею поднял А.Л. Вегенер, а чуть позже довёл до ума А. Холмс. В доказательстве реальности материкового дрейфа палеонтология сыграла немалую роль. Древние животные Южной Америки, Африки и Индии оказались необычайно схожи, несмотря на современное разделение этих областей. Более того, такие же чуть позже нашлись и в Австралии и даже в Антарктиде. Да и современные фауны южного полушария имеют ряд явно неслучайных соответствий. В северном полушарии есть свои сходства. За географией и биологией подтянулась и геология, так что в настоящее время известны не только последовательность и направления схождений-расхождений, но даже скорость движения материков.

Кора планеты состоит из множества отдельных литосферных плит, которые вплотную притёрты друг к другу, но скользят по полурасплавленной магме мантии, которая, оставаясь как бы твёрдой, конвектирует: нагреваясь в глубинах, поднимается, остывает и вновь опускается, приводя в движение исполинские массы породы. Иногда литосферные плиты подныривают под соседние или, напротив, наползают сверху, проваливаются в магму, расплавляясь, или вздымаются к небесам грандиозными горными хребтами. На линии стыков недра могут сотрясаться землетрясениями и прорываться линиями вулканов, а в центральных областях плит сотни миллионов лет царит мир и покой. Понятно, что процесс этот крайне медленный, но и Земля существует четыре с половиной миллиарда лет, так что времени на самые разные комбинации хватало.

География менялась не только из-за движения земной коры. Вслед за солнечными и планетарными пертурбациями температура планеты колебалась, а вслед за этим закономерно увеличивалось или уменьшалось количество воды, свободной и скованной льдами. Уровень мирового океана гулял, огромные площади прибрежных низин то затапливались, то высвобождались из-под волн. Перенаправлялись течения и ветры, влажность внутренних областей росла и падала, а живые организмы добавляли преобразований, формируя, разрушая и закрепляя геологические породы, что вело к усилению или ослаблению поступления микроэлементов в океан, отчего фито- и зоопланктон преображался и влиял на атмосферу.

И вот на этом грандиозном фоне жили и развивались наши предки, каждый раз отчаянно пытаясь не вымереть и обскакать конкурентов. И всё это – наша история, всё это изучает палеонтология.

Статиграфическая шкала
Рис.11 Палеонтология антрополога. Книга 1. Докембрий и палеозой

Часть I

Докембрий: ночь, рассвет

Гадей, или Катархей

4,6–4,0 миллиарда лет назад: Появление жизни

Рис.12 Палеонтология антрополога. Книга 1. Докембрий и палеозой

Гадей – первые полмиллиарда лет существования планеты, от которых до нас дошли только эфемерные флюиды. Свежая Земля не была похожа на ту планету, к виду которой мы привыкли: сутки по 10 часов, огромная кривая Луна на небе, ядовитая атмосфера и совсем иные горные породы. Тем не менее, именно условия молодой Земли задали все наши особенности, химический состав наших тел, потребности и границы возможностей.

* * *

Первые этапы существования планеты покрыты непроглядным астрономическим мраком. В нашей Солнечной системе нет формирующихся планет, а про инозвёздные мы пока знаем слишком мало. Общая космология гласит, что для нашего появления необходимо бытие первых звёзд, образование в недрах красных гигантов тяжёлых элементов, взрывы сверхновых и разлёт элементов по Вселенной, собирание их в новые туманности, звёзды и планетезимали, формирование протопланетных дисков и слипание разрозненных ошмётков в планеты. Нашей Солнечной системе повезло: само Солнце не слишком холодное и не слишком горячее, а огромные планеты-гиганты на периферии защищают своей гравитацией внутренние области от астероидов и комет. Даже катастрофы были нам на пользу. Столкновение только что остывшей Протоземли с каким-то небесным телом размером с Марс оторвало огромный кусок, отлетевший в сторону и ставший Луной, которая с тех пор стала нашей дополнительной защитницей от астероидов. От удара ось Земли перекосилась, что стало залогом смены времён года. Вулканическая активность создала атмосферу, а вода из падающих комет и выделяющийся из мантии планеты водяной пар сконцентрировались в океанах.

Но это всё широкие мазки. Детали картины ускользают, ведь горные породы, из которых была сложена Первоземля, давно успели погрузиться в магму, расплавиться и преобразиться, снова застыв. За колоссальный срок даже элементный состав разных слоёв планеты успел поменяться. Нам только кажется, что планета твёрдая: в масштабе миллиардов лет она вполне жидкая. Тяжёлые элементы помаленьку погружаются в недра, а лёгкие, будучи вытеснены по закону Архимеда, всплывают наверх; самые лёгкие – свободный водород и инертные газы – не могут быть удержаны слабой гравитацией Земли и улетают в космос, в то же время космическая пыль притягивается и оседает на поверхность планеты. Древнейшие известные земные частицы – кристаллы циркона из Австралии с датировкой 4,404 миллиарда лет назад. Хитрые подсчёты возраста самых старых метеоритов показывают, что Земля сформировалась 4,567, 4,55 или 4,54 млрд л. н., то есть первые 150 миллионов лет напрочь выпадают из нашего знания. А ведь это – временной отрезок как от конца юрского периода до современности!

Тем не менее, что-то мы всё-таки знаем.

Судя по нынешним планетам-гигантам, первичная атмосфера Земли содержала много метана и аммиака, поменьше сероводорода, углекислого газа, простейших углеводородов и водяных паров. Кислород, выделявшийся из мантии в процессе дегазации и из воды фотодиссоциацией под действием ультрафиолета, тоже не задерживался, но не улетучивался и не скапливался, а окислял всё, что могло быть окислено.

В таких чудесных условиях и возникла жизнь.

Возникновение жизни из неорганических составляющих называется абиогенезом. В школе поныне проходят абиогенез на примере теории А.И. Опарина – Дж. Холдейна: согласно ей, жизнь самозародилась в «первобытном бульоне» в виде коацерватных капель, на которые воздействовали электрические разряды и ионизирующее излучение. Многочисленные эксперименты показали, что, действительно, в смеси, более-менее соответствующей первичной атмосфере и воде Земли, если стучать туда током или облучать ультрафиолетом, сами собой возникают аминокислоты и нуклеотиды, а если добавить немного серы (которая на Первоземле выкидывалась вулканами), то органика собирается в достаточно длинные цепочки.

Современные представления о происхождении жизни гораздо более сложны. Мы не полезем в эти дебри, тем более, что это уже сделано гораздо лучшими специалистами: все желающие могут прочитать чудесные книги Е.В. Кунина «Логика случая. О природе и происхождении биологической эволюции» (2014 г.) и М.А. Никитина «Происхождение жизни. От туманности до клетки» (2016 г.). Отметим только отрадный факт: все ключевые моменты возникновения живого из неживого уже расшифрованы и по частям воспроизведены в лабораториях. Правда, с нуля до целой клетки пока никто из экспериментаторов не дошёл, но и времени у исследователей было не так много, тогда как в оригинале на это ушли сотни миллионов лет.

Сейчас первые этапы преджизни называются «РНКовым миром», так как первыми действительно важными органическими молекулами были именно цепочки РНК. Аминокислоты тоже существенны, но астрономы обнаруживают их по спектрам даже в межзвёздных облаках. Кстати, тут кроется вечная ошибка неспециалистов: многим кажется, что органические вещества обязательно должны быть результатом жизнедеятельности организмов. Нет! Органические вещества – это соединения углерода обычно с водородом и частым включением также кислорода, фосфора, серы и прочих элементов. Это просто сложная химия, которая вполне может существовать сама по себе вне всякой связи с жизнью. И вот один из пиков этой сложности – молекулы РНК – стал основой жизни.

Важное свойство РНК – способность катализировать реакции. Это сейчас РНК известна больше как переносчик генетической информации, первоначально же не было никакой информации, были просто спонтанно образовывавшиеся молекулы, которые по-разному взаимодействовали. Вариантов РНК было множество, их и сейчас известны десятки. Неустойчивые комплексы разваливались, и мы про них ничего не знаем. Устойчивые же сохранялись, а в силу способности РНК слипаться с аминокислотами и катализировать друг друга увеличивались в числе и сложности. Это называется молекулярной эволюцией.

Замечательное свойство РНК – её большой размер и сложность. К тому же это полимер, который может иметь неопределённо большую длину, складываясь из нескольких типов стандартных кирпичиков – нуклеотидов (аденин, урацил, гуанин и цитозин). С одной стороны, это некоторым образом гарантирует её устойчивость и даёт много биохимических возможностей взаимодействия с белками, с другой – приводит к почти бесконечной изменчивости. А изменчивость – принципиальное отличие жизни от нежизни. Например, минералы тоже имеют много признаков жизни: они обмениваются веществом с окружающей средой, поглощают что-то извне, растут, размножаются. Но у них слишком малая изменчивость: кристаллическая решётка, какая бы хитрая она ни была, всегда воспроизводится по единому стандарту. Конечно, если кристалл в процессе роста натыкается на препятствие или включает в себя что-то инородное, он может изогнуться и искривиться, но принципиально решётка остаётся прежней. Правда, у минералов есть своя эволюция, связанная с упомянутой выше изменчивостью состава земной коры. В древности формировались одни минералы, потом возникали другие, сейчас такие уже не образуются, но появились иные. Однако всё это происходит чересчур медленно и пассивно, чтобы называться жизнью, вариантов очень мало, при одинаковых условиях происходят одни и те же реакции. Другое дело РНК: она имеет оптимальный баланс устойчивости и изменчивости, чтобы молекулярная эволюция поспевала за изменениями среды, в том числе вызванными реакциями, катализируемыми самой РНК.

РНК в итоге стала наследственным аппаратом, то есть хранителем информации, а белки – основой цитоплазмы, то есть главным веществом; а наследственный аппарат и цитоплазма – две из трёх главных основных составляющих живой клетки. Отсюда вырастают два определения жизни: «способ воспроизведения нуклеиновых кислот» и «форма существования белковых тел».

Однако самое ёмкое и всеобъемлющее определение жизни: автокаталитическая система высокомолекулярных соединений углерода в неравновесных условиях.

Одно из важнейших условий среды, в которой появилась жизнь – нестабильность. Была бы среда постоянна, ничего бы там не возникало, всё лежало бы, застывши навеки. Из состава современных организмов, их потребностей и сравнения существ разной степени продвинутости можно примерно прикинуть микроэлементный состав, температуру, кислотность и прочие показатели места, где возникла жизнь.

Вариантов не так уж мало. Это могла быть «маленькая тёплая лужица» (о которой писал ещё Ч. Дарвин в 1871 г.), глубоководная впадина около вулкана, «чёрный» (с сульфидами, в том числе с железом) или «белый» (с окислами кремния, минералами бария и кальция, сульфатами и карбонатами) «курильщик», щелочной источник с микрополостями с полупроницаемыми стенками в минеральных постройках, алюмосиликатная глина, грязевой вулкан, гейзер, фумарола. Каждая из версий имеет слабые и сильные стороны, у каждой есть сторонники и противники. Например, версия с океаном хороша химически, но есть сомнения, существовали ли тогда уже океаны? Версии с грязевыми вулканами и гейзерами хорошо согласуются с данными о самых примитивных бактериях и археях, но возникает вопрос: как они могли противостоять мощнейшей радиации, которой тогда подвергалась планета без магнитного поля и озонового слоя? Вариант с глиной хорошо решает проблему закрепления неустойчивых комплексов, но откуда тогда такая зависимость жизни от воды? Впрочем, все эти проблемы принципиально решаемы. Самое смешное, что учёные придумали уже так много способов появления жизни, что становится совсем не странным, что она таки возникла каким-то одним из них.

Один из важнейших этапов появления клетки – обретение мембраны. Возможно, изначально комплексы РНК и белков ютились в микрополостях минералов и лишь потом обрёли липидную оболочку. Не исключено, что мембраны были изобретены вообще вирусами – паразитами, неизбежно появившимися сразу после возникновения надёжных репликаторов, то есть комплексов, способных самовоспроизводиться. С другой стороны, возможно, А.И. Опарин был не так уж далёк от истины и органические молекулы с самого начала варились в коацерватных каплях.

Мембрана – последняя из трёх принципиальных частей клетки, создающая градиент концентрации между внутренним содержимым и внешней средой. Она обеспечивает запас потенциальной энергии: сначала клетка с затратой энергии закачивает что-то внутрь или выкачивает наружу против градиента концентрации, тем самым создавая напряжение, а потом, когда нужно, в мембране открываются каналы, вещество со страшной силой устремляется по градиенту концентрации, высвобождая кинетическую энергию, которая может быть использована на мирные цели. Если же концентрация веществ по обе стороны мембраны полностью сравняется, движение прекратится, наступит термодинамическое равновесие, тишь да благодать – клетка умрёт.

Продолжить чтение